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Rate Distortion and Denoising of Individual
Data Using Kolmogorov Complexity

Nikolai K. Vereshchagin and Paul M.B. Vitányi

Abstract—We examine the structure of families of distortion
balls from the perspective of Kolmogorov complexity. Special
attention is paid to the canonical rate-distortion function of a
source word which returns the minimal Kolmogorov complexity
of all distortion balls containing that word subject to a bound on
their cardinality. This canonical rate-distortion function is related
to the more standard algorithmic rate-distortion function for the
given distortion measure. Examples are given of list distortion,
Hamming distortion, and Euclidean distortion. The algorithmic
rate-distortion function can behave differently from Shannon’s
rate-distortion function. To this end, we show that the canonical
rate-distortion function can and does assume a wide class of shapes
(unlike Shannon’s); we relate low algorithmic mutual informa-
tion to low Kolmogorov complexity (and consequently suggest
that certain aspects of the mutual information formulation of
Shannon’s rate-distortion function behave differently than would
an analogous formulation using algorithmic mutual information);
we explore the notion that low Kolmogorov complexity distortion
balls containing a given word capture the interesting properties of
that word (which is hard to formalize in Shannon’s theory) and
this suggests an approach to denoising.

Index Terms—Algorithmic rate distortion, characterization, de-
noising, distortion families, fitness of destination words, individual
data, Kolmogorov complexity, rate distortion, shapes of curves.

I. INTRODUCTION

Rate distortion theory analyzes the transmission and storage
of information at insufficient bit rates. The aim is to minimize
the resulting information loss expressed in a given distortion
measure. The original data is called the “source word” and
the encoding used for transmission or storage is called the
“destination word.” The number of bits available for a des-
tination word is called the “rate.” The choice of distortion
measure is usually a selection of which aspects of the source
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word are relevant in the setting at hand, and which aspects are
irrelevant (such as noise). For example, in application to lossy
compression of a sound file this results in a compressed file
where, among others, the very high and very low inaudible
frequencies have been suppressed. The distortion measure
is chosen such that it penalizes the deletion of the inaudible
frequencies but lightly because they are not relevant for the
auditory experience. We study rate distortion of individual
source words using Kolmogorov complexity and show how
it is related to denoising. The classical probabilistic theory is
reviewed in Appendix A. Computability notions are reviewed
in Appendix B and Kolmogorov complexity in Appendix C.
Randomness deficiency according to Definition 8 and its re-
lation to the fitness of a destination word for a source word is
explained further in Appendix D. Appendix E gives the proof,
required for a Hamming distortion example, that every large
Hamming ball can be covered by a small number of smaller
Hamming balls (each of equal cardinality). More specifically,
the number of covering balls is close to the ratio between the
cardinality of the large Hamming ball and the small Hamming
ball. The proofs of the theorems are deferred to Appendix F.

A. Related Work

In [8], Kolmogorov formulated the “structure function”
which can be viewed as a proposal for nonprobabilistic model
selection. This function and the associated Kolmogorov suf-
ficient statistic are partially treated in [19], [24], and [6] and
analyzed in detail in [22]. We will show that the structure
function approach can be generalized to give an approach to
rate distortion and denoising of individual data.

Classical rate-distortion theory was initiated by Shannon in
[17]. In [18] Shannon gave a nonconstructive asymptotic char-
acterization of the expected rate-distortion curve of a random
variable (Theorem 4 in Appendix A). References [1], [2] treat
more general distortion measures and random variables in the
Shannon framework.

References [25], [13], and [20] relate the classical and
algorithmic approaches according to traditional informa-
tion-theoretic concerns. We follow their definitions of the
rate-distortion function. The results in the references show that
if the source word is obtained from random i.i.d. sources, then
with high probability and in expectation its individual rate-dis-
tortion curve is close to the Shannon’s single rate-distortion
curve. In contrast, our Theorem 1 shows that for distortion
measures satisfying properties 1 through 4 there are many
different shapes of individual rate-distortion functions related
to the different individual source words, and many of them are
very different from Shannon’s rate-distortion curve.
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Also Ziv [26] considers a rate-distortion function for indi-
vidual data. The rate-distortion function is assigned to every in-
finite sequence of letters of a finite alphabet . The source
words are prefixes of and the encoding function is com-
puted by a finite state transducer. Kolmogorov complexity is not
involved.

In [16], [12], [4], and [5] alternative approaches to denoising
via compression and in [15] and [14] applications of the current
work are given.

In [22], Theorems 1 and 3 were obtained for a particular dis-
tortion measure relevant to model selection (the example in
this paper). The techniques used in that paper do not generalize
to prove the current theorems which concern arbitrary distortion
measures satisfying certain properties given here.

B. Results

A source word is taken to be a finite binary string. Destination
words are finite objects (not necessarily finite binary strings).
For every destination word encoding a particular source word
with a certain distortion, there is a finite set of source words that
are encoded by this destination word with at most that distor-
tion. We call these finite sets of source words “distortion balls.”
Our approach is based on the Kolmogorov complexity of dis-
tortion balls. For every source word we define its “canonical”
rate-distortion function, from which the algorithmic rate-distor-
tion function of that source word can be obtained by a simple
transformation, Lemma 2.

We assume that a distortion measure satisfies certain prop-
erties which are specified in the theorems concerned. In The-
orem 1, it is shown that there are distinct canonical rate-dis-
tortion curves (and hence distinct rate-distortion curves) asso-
ciated with distinct source words (although some curves may
coincide). Moreover, every candidate curve from a given family
of curves is realized approximately as the canonical rate-distor-
tion curve (and, hence, for a related family of curves every curve
is realized approximately as the rate-distortion curve) of some
source word. In Theorem 2, we prove a Kolmogorov complexity
analog for Shannon’s theorem, Theorem 4 in Appendix A, on
the characterization of the expected rate-distortion curve of a
random variable. The new theorem states approximately the
following: For every source word and every destination word
there exists another destination word that has Kolmogorov com-
plexity equal to the algorithmic information in the first destina-
tion word about the source word, up to a logarithmic additive
term, and both destination words incur the same distortion with
the source word. (The theorem is given in the distortion-ball for-
mulation of destination words.) In Theorem 3 we show that, at
every rate, the destination word incurring the least distortion is
in fact the “best-fitting” among all destination words at that rate.
“Best-fitting” is taken in the sense of sharing the most properties
with the source word. (This notion of a best-fitting destination
word for a source word can be expressed in Kolmogorov com-
plexity, but not in the classic probabilistic framework. Hence
there is no classical analogue for this theorem.) It turns out that
this yields a method of denoising by compression.

II. PRELIMINARIES

A. Data and Binary Strings

We write string to mean a finite binary string. Other finite
objects can be encoded into strings in natural ways. The set
of strings is denoted by . The length of a string is
the number of bits in it denoted as . The empty string has
length . Identify the natural numbers (including 0)
and according to the correspondence

(1)

Then, . The emphasis is on binary sequences only for
convenience; observations in every finite alphabet can be so en-
coded in a way that is “theory neutral.” For example, if a finite
alphabet has cardinality , then every element can
be encoded by which is a block of bits of length . With
this encoding every satisfies that the Kolmogorov com-
plexity (see Appendix C for basic definitions
and results on Kolmogorov complexity) up to an additive con-
stant that is independent of .

B. Rate-Distortion Vocabulary

Let be a set, called the source alphabet whose elements
are called source words or messages. We also use a set called
the destination alphabet, whose elements are called destination
words. (The destination alphabet is also called the reproduction
alphabet.) In general there are no restrictions on the set ; it can
be countable or uncountable. However, for technical reasons, we
assume . On the other hand, it is important that the
set consists of finite objects: we need that the notion of Kol-
mogorov complexity be defined for all . (Again,
for basic definitions and results on Kolmogorov complexity see
Appendix C.) In this paper it is not essential whether we use
plain Kolmogorov complexity or the prefix variant; to be defi-
nite, we use plain Kolmogorov complexity.

Suppose we want to communicate a source word using
a destination word that can be encoded in at most
bits in the sense that the Kolmogorov complexity .
Assume furthermore that we are given a distortion function

, that measures the fidelity of the destination
word against the source word. Here denotes the nonnegative
real numbers,

Definition 1: Let and denote the ra-
tional numbers. The rate-distortion function is
the minimum number of bits in a destination word to obtain a
distortion of at most defined by

The “inverse” of the above function is the distortion-rate func-
tion and is defined by
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These functions are analogs for individual source words of
the Shannon’s rate-distortion function defined in (8) and its re-
lated distortion-rate function, expressing the least expected rate
or distortion at which outcomes from a random source can
be transmitted, see Appendix A.

C. Canonical Rate-Distortion Function

Let be the source alphabet, a destination
alphabet, and a distortion measure.

Definition 2: A distortion ball centered on
with radius is defined by

and its cardinality is denoted by . (We will
consider only pairs such that all distortion balls are finite.)
If the cardinality depends only on but not on the center

, then we denote it by . The family is defined as the
set of all nonempty distortion balls. The restriction to strings of
length is denoted by .

To define the canonical rate-distortion function we need the
notion of the Kolmogorov complexity of a finite set.

Definition 3: Fix a computable total order on the set of all
strings [say the order defined in (1)]. The Kolmogorov com-
plexity of a finite set is defined as the length of the shortest
string such that the universal reference Turing machine
given as input prints the list of all elements of in the fixed
order and halts. We require that the constituent elements are dis-
tinguishable so that we can tell them apart. Similarly we define
the conditional versions and where is a fi-
nite set of strings and is a string or a finite set of strings.

Remark 1: In Definition 3, it is important that halts after
printing the last element in the list—in this way we know that the
list is complete. If we allowed to not halt, then we would
obtain the complexity of the so-called implicit description of ,
which can be much smaller than .

Remark 2: We can allow to output the list of elements
in any order in Definition 3. This flexibility decreases by
at most a constant not depending on but only depending on
the order in (1). The same applies to . On the other
hand, if occurs in a conditional, such as in , then it is
important that elements of are given in the fixed order. This
is the case since the order in which the elements of are listed
can provide extra information.

Definition 4: Fix a computable bijection from the family of
all finite subsets of to . Let be a finite family
of finite subsets of . Define the Kolmogorov com-
plexity by .

Remark 3: An equivalent definition of and
as in Definition 3 is as follows. Let be as in Definition 4.
Then we can define by and by

.

Definition 5: For every string the canonical rate-distortion
function is defined by

In a similar way, we can define the canonical distortion-rate
function

Definition 6: A distortion family is a set of finite nonempty
subsets of the set of source words . The restriction
to source words of length is denoted by .

Every destination alphabet and distortion measure gives
rise to a set of distortion balls , which is a distortion family.
Thus the class of distortion families obviously includes every
family of distortion balls (or distortion spheres, which is some-
times more convenient) arising from every combination of des-
tination set and distortion measure. It is easy to see that we
also can substitute the more general distortion families for

in the definitions of the canonical rate-distortion and dis-
tortion-rate function. In general, the canonical rate-distortion
function of can be quite different from the rate-distortion func-
tion of . However, by Lemma 2 it turns out that for every dis-
tortion measure satisfying certain conditions and for every the
rate-distortion function is obtained from by a simple trans-
formation requiring the cardinality of the distortion balls.

Remark 4: Fix a string and consider
different distortion families . Let denote the canonical
rate-distortion function of with respect to a family . Ob-
viously, if then is pointwise not less than (and
it may happen that for some ). But as long as

satisfies certain natural properties, then the set of all possible
, when ranges over , does not depend on the particular

involved, see Theorem 1.

D. Use of the Big O Term

In the sequel we use “additive constant ” or equivalently “ad-
ditive term” to mean a constant. accounting for the length
of a fixed binary program, independent from every variable or
parameter in the expression in which it occurs. Similarly we
use “ ” to mean a function such that

where is a fixed constant in-
dependent from every variable in the expression.

III. DISTORTION MEASURES

Since every family of distortion balls is a distortion family,
considering arbitrary distortion measures and destination alpha-
bets results in distortion families. We consider the following
mild conditions on distortion families :

Property 1. For every natural number , the family con-
tains the set of all strings of length as an element.
Property 2. All satisfy .
Property 3. Recall that .
Then, .
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Property 4. For every natural , let denote the min-
imal number that satisfies the following. For every positive
integer every set can be covered by at most

sets with . Call the covering
coefficient related to . Property 4 is satisfied if be
bounded by a polynomial in . The smaller the covering
coefficient is, the more accurate will be the description that
we obtain of the shapes of the structure functions below.

The following three example families satisfy all four prop-
erties.

Example 1: the list distortion family. Let be the family
of all nonempty subsets of . This is the family of distor-
tion balls for list distortion, which we define as follows. Let

and . A source word is encoded
by a destination word which is a subset or list with

. Given , we can retrieve by its index of bits in
, ignoring rounding up, hence the name “list code.” The dis-

tortion measure is if , and otherwise.
Thus, distortion balls come only in the form with
cardinality . Trivially, the covering coeffi-
cient as defined in property 4, for the list distortion family ,
satisfies . Reference [22] describes all possible canon-
ical distortion-rate curves, called Kolmogorov’s structure func-
tion there and first defined in [8]. The distortion-rate function for
list distortion coincides with the canonical distortion-rate func-
tion. The rate-distortion function of for list distortion is

and essentially coincides with the canonical rate-distortion
function ( is the restriction of to ).

Example 2: the Hamming distortion family. Let
. A source word is encoded by a destination

word . For every positive integer , the Hamming
distance between two strings and
is defined by

(2)

If and have different lengths, then . A Hamming
ball in with center and radius
is the set . Every is
in either or , so we need to con-
sider only Hamming distance . Let be the family
of all Hamming balls in . We will use the following ap-
proximation of —the cardinality of Hamming balls in
of radius . Suppose that and is an integer, and let

be Shannon’s binary
entropy function. Then,

(3)

In Appendix E it is shown that the covering coefficient as defined
in property 4, for the Hamming distortion family , satisfies

. The function

Fig. 1. Approximate rate-distortion function for Hamming distortion.

is the rate-distortion function of for Hamming distortion. An
approximation to one such function is depicted in Fig. 1.

Example 3: the Euclidean distortion family. Let be
the family of all intervals in , where an interval is a
subset of of the form and de-
notes the lexicographic ordering on . Let .
A source word is encoded by a destination word

. Interpret strings in as binary notations for
rational numbers in the segment . Consider the Euclidean
distance between rational numbers and . The balls in
this metric are intervals; the cardinality of a ball of radius is
about . Trivially, the covering coefficient as defined in prop-
erty 4, for the Euclidean distortion family , satisfies .
The function

is the rate-distortion function of for Euclidean distortion.

All the properties 1 through 4 are straightforward for all three
families, except property 4 in the case of the family of Hamming
balls.

IV. SHAPES

The rate-distortion functions of the individual strings of
length can assume roughly every shape. That is, every shape
derivable from a function in the large family of Definition
5 below through transformation (4).

We start the formal part of this section. Let be a distortion
family satisfying properties 1 through 4.

Property 1 implies that and property 4 applied to
and , for every , implies trivially that the family

contains the singleton set for every . Hence

Property 1 implies that for every and string of length ,

Together this means that for every and every string of length
, the function decreases from about to about 0 as

increases from 0 to .
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Lemma 1: Let be a distortion family satisfying properties
1 through 4. For every and every string of length we have

, and
for all .

Proof: The first equation and the left-hand inequality of the
second equation are straightforward. To prove the right-hand in-
equality, let witness , which implies that

and . By Property 4 there is a covering of by at
most sets in of cardinality at most each. Given a
list of and a list of , we can find such a covering. Let be
one of the covering sets containing . Then, can be specified
by and the index of among the covering sets. We
need also extra bits
to separate the descriptions of and , and the binary repre-
sentations of , from one another. Without loss of generality
we can assume that is less than . Thus all the extra informa-
tion and separator bits are included in bits. Altogether,

,
which shows that

.

Example 4: Lemma 1 shows that

for every . The right-hand inequality is obtained by
setting in the lemma, yielding

The left-hand inequality is obtained by setting in
the lemma, yielding

The last displayed equation can also be shown by a simple direct
argument: can be described by the minimal description of the
set witnessing and by the ordinal number of in

.

The rate-distortion function differs from by just a
change of scale depending on the distortion family involved,
provided certain computational requirements are fulfilled. See
Appendix B for computability notions.

Lemma 2: Let , and , be the source alphabet,
destination alphabet, and distortion measure, respectively. As-
sume that the set is decid-
able; that is recursively enumerable; and that for every the
cardinality of every ball in of radius is at most and
at least , where is polynomial in and is
a function of ; and that the distortion family satisfies
properties 1 through 4. Then, for every and every
rational we have

(4)

Proof: Fix and a string of length . Consider the aux-
iliary function

(5)

We claim that . Indeed, let
witness . Given we can compute a list of ele-
ments of the ball : for all strings of length determine
whether . Thus ,
hence . Conversely, let
witness . Given a list of the elements of and

we can recursively enumerate to find the first element
with (for every enumerated compute the
list and compare it to the given list ). Then,

and . Hence
.

Thus, it suffices to show that

Assume is witnessed
by a distortion ball . By our assumption, the cardinality
of is at most , and hence .

By Lemma 1,
and differ by at most . Therefore, it suf-
fices to show that for some

. We claim that this happens for .
Indeed, let be witnessed by a distor-
tion ball . Then, .
This implies that the radius of is less than and hence wit-
nesses .

Remark 5: When measuring distortion we usually do not
need rational numbers with numerator or denominator more
than . Then, the term in (4) is absorbed by the
term . Thus, describing the family of ’s we obtain an
approximate description of all possible rate-distortion functions

for given destination alphabet and distortion measure, satis-
fying the computability conditions, by using the transformation
(4). An example of an approximate rate-distortion curve for
some string of length for Hamming distortion is given in
Fig. 1.

Remark 6: The computability properties of the functions
, and , as well as the relation between the destination word

for a source word and the related distortion ball, is explained in
Appendix B.

We present an approximate description of the family of pos-
sible ’s below. It turns out that the description does not de-
pend on the particular distortion family as long as properties
1 through 4 are satisfied.

Definition 7: Let stand for the class of all func-
tions such that and

for all .
In other words, a function is in iff it is nonincreasing

and the function is nondecreasing and . The
following result is a generalization to arbitrary distortion mea-
sures of [22, Theorem IV.4] dealing with (equaling in the
particular case of the distortion family ). There, the precision
in Item (ii) for source words of length is , rather than
the we obtain for general distortion families.

Theorem 1: Let be a distortion family satisfying properties
1 through 4.
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i) For every and every string of length , the function
is equal to for some function

.
ii) Conversely, for every and every function in , there

is a string of length such that for every
.

Remark 7: For fixed the number of different integer
functions with is . For , this
number is of order , and therefore far greater than the
number of strings of length and Kolmogorov complexity

which is at most . This explains the fact
that in Theorem 1, Item (ii), we cannot precisely match a string

of length to every function , and therefore have to
use approximate shapes.

Example 5: By Theorem 1, Item (ii), for every there
is a string of length that has for its canonical rate-distortion
function up to an additive term. By (3), (4), and
Remark 5, in the case of Hamming distortion, we have

for . Fig. 1 gives the graph of a particular function
with defined as follows:

for
for , and for

. In this way, . Thus, there is a string
of length with its rate-distortion graph in a strip of

size around the graph of . Note that is al-
most constant on the segment . Allowing the distortion to
increase on this interval, all the way from to , so allowing

incorrect extra bits, we still cannot significantly decrease
the rate. This means that the distortion-rate function of
drops from to near the point , exhibiting
a very unsmooth behavior.

V. CHARACTERIZATION

Theorem 2 states that a destination word that codes a given
source word and minimizes the algorithmic mutual information
with the given source word gives no advantage in rate over a
minimal Kolmogorov complexity destination word that codes
the source word. This theorem can be compared with Shannon’s
theorem, Theorem 4 in Appendix A, about the expected rate-
distortion curve of a random variable.

Theorem 2: Let be a distortion family satisfying properties
2 and 3, and . For every and string

of length and every there is an with
and

, where stands for the
algorithmic information in about .

For further information about see Definition 11 in
Appendix C. The proof of Shannon’s theorem, Theorem 4, and
the proof of the current theorem are very different. The latter
proof uses techniques that may be of independent interest. In
particular, we use an online set cover algorithm where the sets
come sequentially and we always have to have the elements
covered that occur in a certain number of sets, Lemma 6 in
Appendix F.

Example 6: Theorem 2 states that for an appropriate distor-
tion family of nonempty finite subsets of and for every
string , if there exists an of cardinality or
less containing that has small algorithmic information about

, then there exists another set containing that has
also at most elements and has small Kolmogorov complexity
itself.

For example, in the case of Hamming distortion, if for a given
string there exists a string at Hamming distance from that
has small information about , then there exists another string

that is also within distance of and has small Kolmogorov
complexity itself (not only small algorithmic information about

). Here are strings of length .
To see this, note that the Hamming distortion family of Ex-

ample 2 satisfies properties 2 and 3. Consider Hamming balls in
. Let be the ball of radius with center . By Theorem

2 there is a Hamming ball with
and . Notice
that and thus we can drop in
this inequality. Without loss of generality we may assume that
the radius of at most (otherwise we can cover
by a polynomial number of balls of radius by Lemma 5 and
then replace by a covering ball which contains ). Let be
the center of . Thus is at distance at most from and it
suffices to prove that . The infor-
mation in the ball equals that in the pair . Therefore

Since , we obtain

VI. FITNESS OF DESTINATION WORD

In Theorem 3 we show that if a destination word of a cer-
tain maximal Kolmogorov complexity has minimal distortion
with respect to the source word, then it also is the (almost)
best-fitting destination word in the sense (explained below) that
among all destination words of that Kolmogorov complexity it
has the most properties in common with the source word. “Fit-
ness” of individual strings to an individual destination word is
hard, if not impossible, to describe in the probabilistic frame-
work. However, for the combinatoric and computational notion
of Kolmogorov complexity it is natural to describe this notion
using “randomness deficiency” as in Definition 8.

Reference [22] uses ‘fitness’ with respect to the particular dis-
tortion family . We briefly overview the generalization to ar-
bitrary distortion families satisfying properties 2 and 3 (details,
formal statements and proofs about can be found in the cited
reference). The goodness of fit of a destination word for a
source word with respect to an arbitrary distortion family
is defined by the randomness deficiency of in the distortion
ball with . The lower the randomness defi-
ciency, the better is the fit.
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Definition 8: The randomness deficiency of in a set with
is defined as . If

is small then is a typical element of . Here “small” is taken
as or where , depending on the context
of the future statements.

The randomness deficiency can be little smaller than 0, but
not more than a constant.

Definition 9: Let be an integer parameter and .
We say is a property in if is a ‘majority’ subset of , that
is, . We say that satisfies property
if .

If the randomness deficiency is not much greater than
0, then there are no simple special properties that single out
from the majority of strings to be drawn from . This is not
just terminology: If is small enough, then satisfies all
properties of low Kolmogorov complexity in (Lemma 4 in
Appendix D). If is a set containing such that is
small then we say that is a set of good fit for . In [22] the
notion of models for is considered: Every finite set of strings
containing is a model for . Let be a string of length and
choose an integer between 0 and . Consider models for of
Kolmogorov complexity at most . In [22, Theorem IV.8 and
Remark IV.10] show for the distortion family that has min-
imal randomness deficiency in every set that witnesses
(for we have ), ignoring additive
terms. That is, up to the stated precision every such witness set
is the best-fitting model that is possible at model Kolmogorov
complexity at most . It is remarkable, and in fact unexpected to
the authors, that the analogous result holds for arbitrary distor-
tion families provided they satisfy properties 2 and 3.

Theorem 3: Let be a distortion family satisfying properties
2 and 3 and a string of length . Let be a set in with

. Let be a set of minimal Kolmogorov complexity
among the sets with and .
Then

Lemma 3: For every set with

(6)

up to a additive term.
Proof: Inequality (6) means that

that is, . The latter in-
equality follows from the general inequality

, where
.

A set with is an algorithmic sufficient statistic for
if is close to . Lemma 3 shows that every
sufficient statistic for is a model of a good fit for .

Example 7: Consider the elements of every uniformly
distributed. Assume that we are given a string that was ob-
tained by a random sampling from an unknown set

satisfying . Given we want to recover ,
or some that is “a good hypothesis to be the source
of ” in the sense that the randomness deficiency is
small. Consider the set from Theorem 3 as such a hypoth-
esis. We claim that with high probability is of order

. More specifically, for every the probability of the
event is less than , which is neg-
ligible for . Indeed, if is chosen uniformly
at random in , then with high probability (Appendix D) the
randomness deficiency is small. That is, with proba-
bility more than we have . By Theorem 3
and (6) we also have . There-
fore, the probability of the event is less than

.

Example 8: Theorem 3 says that for fixed log-cardinality
the model that has minimal Kolmogorov complexity has also
minimal randomness deficiency among models of that log-car-
dinality. Since satisfies Lemma 1, we have also that for every

the model of Kolmogorov complexity at most that mini-
mizes the log-cardinality also minimizes randomness deficiency
among models of that Kolmogorov complexity. These models
can be computed in the limit, in the first case by running all pro-
grams up to bits and always keeping the one that outputs the
smallest set in containing , and in the second case by running
all programs up to bits and always keeping the shortest
one that outputs a set in containing having log-cardinality
at most .

VII. DENOISING

In Theorem 3, using (6) we obtain

(7)

This gives a method to identify good-fitting models for using
compression, as follows. Let and .
If is a set of minimal Kolmogorov complexity among sets

with and , then by (7) the hypothesis
“ is chosen at random in ” is (almost) at least as plausible
as the hypothesis “ is chosen at random in ” for every simply
described (say, ) with
.

Let us look at an example of denoising by compression (in
the ideal sense of Kolmogorov complexity) for Hamming distor-
tion. Fix a target string of length and a distortion .
(This string functions as the destination word.) Let a string
be a noisy version of by changing at most randomly chosen
bits in (string functions as the source word). That is, the
string is chosen uniformly at random in the Hamming ball

. Let be a string witnessing , that is, is
a string of minimal Kolmogorov complexity with
and . We claim that at distortion the string is
a good candidate for a denoised version of , that is, the target
string . This means that in the two-part description
of , the second part (the bitwise XOR of and ) is noise:

is a random string in the Hamming ball in
the sense that is negligible. Moreover,
even the conditional Kolmogorov complexity is
close to .
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Indeed, let . By Definition 5 of , Theorem 3
implies that

ignoring additive terms of and observing that the ad-
ditive term is absorbed by . For every , the
rate-distortion function of differs from just by changing
the scale of the argument as in (4). More specifically, we have

and hence

Since we assume that is chosen uniformly at random in , the
randomness deficiency is small, say with high
probability. Since

, and , it follows that with high
probability, and the equalities up to an additive term,

Since by construction , the displayed equa-
tion shows that the ball is a sufficient statistic for

. This implies that is a typical element of , that is,
is close to .

Here is an appropriate program of bits.
This provides a method of denoising via compression, at least

in theory. In order to use the method practically, admittedly with
a leap of faith, we ignore the ubiquitous additive terms,
and use real compressors to approximate the Kolmogorov com-
plexity, similar to what was done in [10], [11]. The Kolmogorov
complexity is not computable and can be approximated by a
computable process from above but not from below, while a real
compressor is computable. Therefore, the approximation of the
Kolmogorov complexity by a real compressor involves for some
arguments errors that can be high and are in principle unknow-
able. Despite all these caveats it turns out that the practical ana-
logue of the theoretical method works surprisingly well in all
experiments we tried [15].

As an example, we approximated the distortion-rate function
of a noiseless cross called the target. It consists of a mono-
chrome image of 1188 black pixels together with 2908 sur-
rounding white pixels, forming a plane of 64 64 black-or-
white pixels. Added are 377 pixels of artificial noise inverting
109 black pixels and 268 white pixels. This way we obtain a
noisy cross called the input. The input is in effect a pixelwise
exclusive OR of the target and noise. The distortion used is
Hamming distortion. At every rate we com-
pute a set of candidates. Every candidate consists of the
64 64 pixel plane divided into black pixels and white pixels.
Every candidate approximates the input in a certain sense and a
compressed version requires at most bits. For every (uncom-
pressed) candidate in the distortion to the input is com-
puted. The candidate in that minimizes the distortion is
called the “best” candidate at rate .

Fig. 2 shows two graphs. The first graph hits the horizontal
axis at about 3178 bits. On the horizontal axis it gives the rate,
and on the vertical axis it denotes the distortion to the input of
the best candidate at every rate. The line hits zero distortion at
rate about 3178, when the input is retrieved as the best candidate

(attached to this point). The second graph hits the horizontal
axis at about 260 bits. The horizontal axis denotes again the
rate, but now the vertical axis denotes the distortion between the
best candidate and the target. The line hits almost zero distortion
(three bits flipped) at rate about 260. There an image that is al-
most the target is retrieved as the best candidate (attached to this
point). The three wrong bits are two at the bottom left corner and
one in the upper right armpit. The hitting of the horizontal axis
by the second graph coincides with a sharp slowing of the rate
of decrease of the first graph. Subsequently, the second graph
rises again because the best candidate at that rate starts to model
more of the noise present in the input. Thus, the second graph
shows us the denoising of the input, underfitting left of the point
of contact with the horizontal axis, and overfitting right of that
point. This point of best denoising can also be deduced from the
first graph, where it is the point where the distortion-rate curve
sharply levels off. Since this point has distortion of only 3 to the
target, the distortion-rate function separates structure and noise
very well in this example.

In the experiments in [15], a specially written block sorting
compression algorithm with a move-to-front scheme as de-
scribed in [3] was used. The algorithm is very similar to a
number of common general purpose compressors, such as
bzip2 and zzip, but it is simpler and faster for small inputs; the
source code (in C) is available from the authors of [15].

APPENDIX

A. Shannon Rate Distortion

Classical rate-distortion theory was initiated by Shannon in
[17], [18], and we briefly recall his approach. Let and be
finite alphabets. A single-letter distortion measure is a function

that maps elements of to the reals. Define the distortion
between words and of the same length over alphabets
and , respectively, by extending :

Let be a random variable with values in . Consider the
random variable with values in , that is, the sequence

of independent copies of . We want to encode
words in by code words over so that the number of all
code words is small and the expected distortion between out-
comes of and their codes is small. The tradeoff between the
expected distortion and the number of code words used is ex-
pressed by the Shannon rate-distortion function . This func-
tion maps every to the minimal natural number (we call

the rate) having the following property: There is an encoding
function with a range of cardinality at most
such that the expected distortion between the outcomes of
and their corresponding codes is at most . That is

(8)

the expectation taken over the probabilities of the ’s in .
In [18] Shannon gave the following nonconstructive asymp-

totic characterization of . Let be a random variable
with values in . Let stand for the Shannon
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Fig. 2. Denoising of the noisy cross.

entropy and conditional Shannon entropy, respectively. Let
denote the mutual information

in and , and stand for the expected value of
with respect to the joint probability

of the random variables and . For a real , let denote
the minimal subject to . That such a
minimum is attained for all can be shown by compactness
arguments.

Theorem 4: For every and we have .
Conversely, for every and every positive , we have

for all large enough .

B. Computability

In 1936, Turing [21] defined the hypothetical “Turing ma-
chine” whose computations are intended to give an operational
and formal definition of the intuitive notion of computability in
the discrete domain. These Turing machines compute integer
functions, the computable functions. By using pairs of integers
for the arguments and values we can extend computable func-
tions to functions with rational arguments and/or values. The no-
tion of computability can be further extended, see, for example,
[9]: A function with rational arguments and real values is
upper semicomputable if there is a computable function
with an rational number and a nonnegative integer such that

for every and .
This means that can be computably approximated from above.
A function is lower semicomputable if is upper semi-
computable. A function is called semicomputable if it is either
upper semicomputable or lower semicomputable or both. If a
function is both upper semicomputable and lower semicom-
putable, then is computable. A countable set is computably
(or recursively) enumerable if there is a Turing machine that
outputs all and only the elements of in some order and does
not halt. A countable set is decidable (or recursive) if there is
a Turing machine that decides for every candidate whether

and halts.
Example 9: An example of a computable function is

defined as the th prime number; an example of a function that
is upper semicomputable but not computable is the Kolmogorov

complexity function in Appendix C. An example of a recur-
sive set is the set of prime numbers; an example of a recursively
enumerable set that is not recursive is .

Let , and and the distortion measure be
given. Assume that is recursively (= computably) enumerable
and the set is decid-
able. Then is upper semicomputable. Namely, to determine

proceed as follows. Recall that is the reference uni-
versal Turing machine. Run for all dovetailed fashion
(in stage of the overall computation execute the th computa-
tion step of the th program). Interleave this computation
with a process that recursively enumerates . Put all enumer-
ated elements of in a set . Whenever halts we put
the output in a set . After every step in the overall computa-
tion we determine the minimum length of a program such that

and . We call a candidate pro-
gram. The minimal length of all candidate programs can only
decrease in time and eventually becomes equal to . Thus,
this process upper semicomputes .

The function is also upper semicomputable. The proof is
similar to that used to prove the upper semicomputability of .
It follows from [22] that in general , and, hence, its “inverse”

and by Lemma 2 the function , are not computable.
Assume that the set is recursively enumerable and the set

is decidable. Assume that
the resulting distortion family satisfies Property 2. There
is a relation between destination words and distortion balls. This
relation is as follows.

(i) Communicating a destination word for a source word
knowing a rational upper bound for the distortion

involved is the same as communicating a distortion ball of radius
containing .
(ii) Given (a list of the elements of) a distortion ball we can

upper semicompute the least distortion such that
for some .

Ad (i). This implies that the function defined in (5) dif-
fers from by . See the proof of Lemma 2.

Ad (ii). Let be a given ball. Recursively enumerating and
the possible , we find for every newly enumerated ele-
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ment of whether (see the proof of Lemma 2
for an algortihm to find a list of elements of given ).
Put these ’s in a set . Consider the least element of at
every computation step. This process upper semicomputes the
least distortion corresponding to the distortion ball .

C. Kolmogorov Complexity

For precise definitions, notation, and results see the text [9].
Informally, the Kolmogorov complexity, or algorithmic entropy,

of a string is the length (number of bits) of a shortest
binary program (string) to compute on a fixed reference uni-
versal computer (such as a particular universal Turing machine).
Intuitively, represents the minimal amount of information
required to generate by any effective process. The conditional
Kolmogorov complexity of relative to is defined
similarly as the length of a shortest binary program to compute

, if is furnished as an auxiliary input to the computation.
Let be a standard enumeration of all (and only)

Turing machines with a binary input tape, for example the
lexicographic length-increasing ordered syntactic Turing ma-
chine descriptions, [9], and let be the enumeration
of corresponding functions that are computed by the respective
Turing machines ( computes ). These functions are the
computable (or recursive) functions. For the development of
the theory we actually require the Turing machines to use
auxiliary (also called conditional) information, by equip-
ping the machines with a special read-only auxiliary tape
containing this information at the outset. Let be a com-
putable one to one pairing function on the natural numbers
(equivalently, strings) mapping
with . (We need the extra

bits to separate from . For Kolmogorov com-
plexity, it is essential that there exists a pairing function such
that the length of is equal to the sum of the lengths of

plus a small value depending only on .) We denote the
function computed by a Turing machine with as input and

as conditional information by .
One of the main achievements of the theory of computation

is that the enumeration contains a machine, say ,
that is computationally universal in that it can simulate the com-
putation of every machine in the enumeration when provided
with its index. It does so by computing a function such that

for all . We fix one such machine
and designate it as the reference universal Turing machine or
reference Turing machine for short.

Definition 10: The conditional Kolmogorov complexity of
given (as auxiliary information) with respect to Turing ma-
chine is

(9)

The conditional Kolmogorov complexity is defined as
the conditional Kolmogorov complexity with respect
to the reference Turing machine usually denoted by . The
unconditional version is set to .

Kolmogorov complexity has the following crucial
property: for all , where

depends only on (asymptotically, the reference Turing ma-
chine is not worse than any other machine). Intuitively,
represents the minimal amount of information required to gen-
erate by any effective process from input . The functions

and , though defined in terms of a particular ma-
chine model, are machine-independent up to an additive con-
stant and acquire an asymptotically universal and absolute char-
acter through Church’s thesis, see for example [9], and from the
ability of universal machines to simulate one another and exe-
cute any effective process. The Kolmogorov complexity of an
individual finite object was introduced by Kolmogorov [7] as
an absolute and objective quantification of the amount of in-
formation in it. The information theory of Shannon [17], on
the other hand, deals with average information to communi-
cate objects produced by a random source. Since the former
theory is much more precise, it is surprising that analogs of the-
orems in information theory hold for Kolmogorov complexity,
be it in somewhat weaker form. For example, let and be
random variables with a joint distribution. Then,

, where is the entropy of the marginal dis-
tribution of . Similarly, let denote where

is a standard pairing function as defined previously and
are strings. Then we have

. Indeed, there is a Turing machine that pro-
vided with as an input computes (where is
the reference Turing machine). By construction of , we have

, hence
.

Another interesting similarity is the following:
is the (probabilistic) information in random

variable about random variable . Here is the
conditional entropy of given . Since
we call this symmetric quantity the mutual (probabilistic) infor-
mation.

Definition 11: The (algorithmic) information in about is
, where are finite objects like

finite strings or finite sets of finite strings.
It is remarkable that also the algorithmic information in one

finite object about another one is symmetric:
up to an additive term logarithmic in . This

follows immediately from the symmetry of information property
due to Kolmogorov and Levin

(10)

D. Randomness Deficiency and Fitness

Randomness deficiency of an element of a finite set ac-
cording to Definition 8 is related with the fitness of (iden-
tified with the fitness of set as a model for ) in the sense of

having most properties represented by the set . Properties
are identified with large subsets of whose Kolmogorov com-
plexity is small (the ‘simple’ subsets).

Lemma 4: Let be constants. Assume that is a subset
of with and . Then the
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randomness deficiency of every satisfies

Proof: Since and
,

while ,
we obtain .

The randomness deficiency measures our disbelief that can
be obtained by random sampling in (where all elements of
are equiprobable). For every , the randomness deficiency of
almost all elements of is small: The number of with

is fewer than . This can be seen as follows.
The inequality implies .
Since , there are less than

programs of fewer than bits. Therefore, the
number of ’s satisfying the inequality
cannot be larger. Thus, with high probability the randomness
deficiency of an element randomly chosen in is small. On the
other hand, if is small, then there is no way to refute
the hypothesis that was obtained by random sampling from :
Every such refutation is based on a simply described property
possessed by a majority of elements of but not by . Here it
is important that we consider only simply described properties,
since otherwise we can refute the hypothesis by exhibiting the
property .

E. Covering Coefficient for Hamming Distortion

The authors find it difficult to believe that the covering result
in the lemma below is new. But neither a literature search nor
the consulting of experts has turned up an appropriate reference.

Lemma 5: Consider the distortion family . For all
every Hamming ball of radius in can be covered by

at most Hamming balls of radius in , where
is a polynomial in .

Proof: Fix a ball with center and radius
where is a natural number. All the strings in the ball that are
at Hamming distance at most from can be covered by one
ball of radius with center . Thus it suffices, for every of
the form with (such that ), to
cover the set of all the strings at distance precisely from
by balls of radius for some fixed constant .
Then the ball is covered by at most

balls of radius .
Fix and let the Hamming sphere denote the set of all

strings at distance precisely from . Let be the solution to
the equation rounded to the closest rational of
the form . Since this equation has a unique
solution and it lies in the closed real interval . Consider a
ball of radius with a random center at distance from

. Assume that all centers at distance from are chosen with
equal probabilities where is the number of points
in a Hamming sphere of radius .

Claim 1: Let be a particular string in . Then

for some fixed positive constant .

Proof: Fix a string at distance from . We first claim
that the ball of radius with center covers strings in

. Without loss of generality, assume that the string consists
of only zeros and string consists of ones and
zeros. Flip a set of ones and a set of zeros in to
obtain a string . The total number of flipped bits is equal to
and therefore is at distance from . The number of ones in
is and therefore . Different
choices of the positions of the same numbers of flipped bits
result in different strings in . The number of ways to choose
the flipped bits is equal to

By Stirling’s formula, this is at least

where the last inequality follows from (3). Therefore a ball as
above covers at least strings of . The probability that
a ball , chosen uniformly at random as above, covers a partic-
ular string is the same for every such since they are
in symmetric position. The number of elements in a Hamming
sphere is smaller than the cardinality of a Hamming ball of the
same radius, . Hence with probability

a random ball covers a particular string in .

By Claim 1, the probability that a random ball does not
cover a particular string is at most . The
probability that no ball out of randomly drawn such balls
covers a particular (all balls are equiprobable) is at most

For , the exponent of the right-hand side
(RHS) of the last inequality is , and the probability that is
not covered is at most . This probability remains exponen-
tially small even after multiplying by , the number of
different ’s in . Hence, with probability at least
we have that random balls of the given type cover all the
strings in . Therefore, there exists a deterministic selection
of such balls that covers all the strings in . The lemma
is proved. (A more accurate calculation shows that the lemma
holds with .)

Corollary 1: Since all strings of length are either in
the Hamming ball or in the Hamming ball

in , the lemma implies that the set
can be covered by at most
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balls of radius for every . (A similar, but direct,
calculation lets us replace the factor by .)

F. Proofs of the Theorems

Proof: of Theorem 1. (i) Lemma 1 (assuming properties
1 through 4) implies that the canonical structure function
of every string of length is close to some function in the
family . This can be seen as follows. Fix and construct
inductively for . Define and

By construction this function belongs to the family . Let us
show that . First, we prove that

(11)

by induction on . For the inequality is
straightforward, since by definition . Let .
Assume that for . If

then and therefore
. If then

and hence .
Second, we prove that

for every . Fix an and consider the least with
such that . If there is no such

we take and observe that
. This way, and for every

we have due to inequality
(11) and definition of . Then ,
since we know that is nonincreasing. Then, by the definition
of we have . Thus, we have

. Hence,
, where the inequality

follows from Lemma 1, the first equality from the assumption
that , and the second equality from
the previous sentence.

(ii) In [22, Theorem IV.4] we proved a similar statement for
the special distortion family with an error term of .
However, for the special case we can let be equal to the first

satisfying the inequality for every
. In the general case this does not work any more. Here we

construct together with sets ensuring the inequalities
for every .

The construction is as follows. Divide the segment
into subsegments of length

each. Let denote the
end points of the resulting subsegments.

To find the desired , we run the nonhalting algorithm below
that takes and as input together with the values of the
function in the points . Let be a computable
integer valued function of of the order that will be
specified later.

Definition 12: Let . A set is called
-forbidden if and . A set is

called forbidden if it is -forbidden for some .

We wish to find an that is outside all forbidden sets (since
this guarantees that for every ). Since

is upper semicomputable, moreover property 3 holds, and
we are also given and , we are able to find all
forbidden sets using the following subroutine.

Subroutine :

for every upper semicompute ; every time
we find and for some and

, then print . End of Subroutine

This subroutine prints all the forbidden sets in some order.
Let be that order. Unfortunately we do not know
when the subroutine will print the last forbidden set. In other
words, we do not know the number of forbidden sets. To
overcome this problem, the algorithm will run the subroutine
and every time a new forbidden set is printed, the algorithm
will construct candidate sets satisfying

and and the following
condition:

(12)

for every . For the set is the
union of all forbidden sets, which guarantees the bounds

for all in the set in the left-hand
side (LHS) of (12). Then we will prove that these bounds imply
that for every .
Each time a new forbidden set appears (that is, for every

) we will need to update candidate sets so that (12) re-
mains true. To do that we will maintain a stronger condition than
just nonemptiness of the LHS of (12). Namely, we will maintain
the following invariant: for every

(13)

Note that for inequality (13) implies (12).
Algorithm :

Initialize. Recall that . Define the set
for every . This set is in by property 1.

for do
Assume inductively that

,
where denotes a polynomial upper bound of
the covering coefficient of distortion family
existing by property 4. (The value can be computed
from .) Note that this inequality is satisfied for

. Construct by covering by
at most sets of cardinality at most
(this cover exists in by property 4). Trivially,
this cover also covers . The
intersection of at least one of the covering sets with

has cardinality at least
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Let by the first such covering set in a given standard
order. od
Notice that after the Initialization the invariant (13) is true
for , as . For every perform
the following steps 1 and 2 maintaining the invariant (13):
Step 1. Run the subroutine and wait until th forbidden set

is printed (if the algorithms waits forever and
never proceeds to Step 2).
Step 2.
Case 1. For every we have

(14)

Note the this inequality has one more forbidden set com-
pared to the invariant (13) for (the argument in

), and thus may be false. If that is the case, then we let
for every (this setting

maintains invariant (13)).
Case 2. Assume that (14) is false for some index . In this
case find the least such index (we will use later that (14) is
true for all ).
We claim that . That is, the inequality (14) is true
for . In other words, the cardinality of
is not larger than half of the cardinality of

. Indeed, for every fixed the total cardinality of all
the sets of simultaneously cardinality at most and Kol-
mogorov complexity less than does not exceed

. Therefore, the total number of elements in
is at most

where the first inequality follows since the function
is monotonic nondecreasing, the first equality since

by definition, and the last inequality since we will set
at order of magnitude .

First let for all (this maintains
invariant (13) for all ). To define find a covering
of by at most sets in of cardinality
at most . Since (14) is true for index , we have

(15)

Thus the greatest cardinality of an intersection of the set in
(15) with a covering set is at least

Let be the first such covering set in standard order.
Note that is at least twice the threshold required

by invariant (13). Use the same procedure to obtain succes-
sively .

End of Algorithm
Although the algorithm does not halt, at some unknown time

the last forbidden set is enumerated. After this time the can-
didate sets are not changed anymore. The invariant (13) with

shows that the cardinality of the set in the LHS of (12)
is positive, and hence the set is not empty.

Next we show that for every and
every . We will see that to this end it suffices to
upperbound the number of changes of each candidate set.

Definition 13: Let be the number of changes of defined
by for .

Claim 2: for .

Proof: The Claim is proved by induction on . For
the claim is true, since and while by
initialization in the Algorithm ( never changes).

: assume that the Claim is satisfied for every with
. We will prove that by counting

separately the number of changes of of different types.
Change of type 1. The set is changed when (14) is false

for an index strictly less than . The number of these changes is
at most

where the first inequality follows from the inductive assumption,
and the second inequality by the property of that it is nonin-
creasing. Namely, since we have .

Change of type 2. The inequality (13) is false for and is true
for all smaller indexes.

Change of type 2a. After the last change of at least
one -forbidden set for some has been enumerated.
The number of changes of this type is at most the number of
-forbidden sets for . For every such these

forbidden sets have by definition Kolmogorov complexity less
than . Since and is monotonic nonin-
creasing we have . Because there are at most of
these ’s, the number of such forbidden sets is at most

since we will later choose of order ,
Change of type 2b. Finally, for every change of this type,

between the last change of and the current one no candi-
date sets with indexes less than have been changed and no
-forbidden sets with have been enumerated. Since after

the last change of the cardinality of the set in the LHS of
(13) was at least , which is twice the threshold in the
RHS by the restoration of the invariant in the Algorithm Step
2, Case 2, the following must hold. The cardinality of
increased by at least since the last change of ,
and this must be due to enumerating -forbidden sets for

. For every such every -forbidden set has cardinality
at most and Kolmogorov complexity less than .
Hence, the total number of elements in all -forbidden sets is
less than . Since and hence while
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is monotonic nondecreasing we have
. Because there are at most of these ’s, the

total number of elements in all those sets does not exceed
. The number of changes of this type is

not more than the total number of elements involved divided
by the increments of size . Hence it is not more than

Let

(16)

where the last equality uses that is polynomial in by prop-
erty 4. Then, the number of changes of type 2b is much less than

. The value of can be computed from .
Summing the numbers of changes of types 1, 2a, and 2b we

obtain , completing the induction.

Claim 3: Every in the nonempty set (12) satisfies
with for .

Proof: By construction is not an element of any for-
bidden set in , and, therefore

for every . By construction , and
to finish the proof it remains to show that

so that , for . Fix .
The set can be described by a constant length program,
that is bits, that runs the Algorithm and uses the following
information:

• A description of in bits.
• A description of the distortion family in bits

by property 3.
• The values of in the points in

bits.
• The description of in bits.
• The total number of changes (Case 2 in the Algorithm)

to intermediate versions of in bits.
We count the number of bits in the description of .

The description is effective and by Claim 2 with
it takes at most bits. So this

is an upper bound on the Kolmogorov complexity .
Therefore, for some satisfying (16) we have

for every . The claim follows from the first and
the last displayed equation in the proof.

Let us show that the statement of Claim 3 holds not only
for the subsequence of values but for every

,
Let . Both functions are nonin-

creasing so that

By the spacing of the sequence of ’s the length of the segment
is at most

If there is an such that Claim 3 holds for every with
, then it follows from the above that

for every .

Proof: of Theorem 2. We start with Lemma 6 stating a com-
binatorial fact that is interesting in its own right, as explained
further in Remark 8.

Lemma 6: Let be natural numbers and a string of
length . Let be a family of subsets of and

. If has at least elements (that is, sets)
of Kolmogorov complexity less than , then there is an element
in of Kolmogorov complexity at most

.

Proof: Consider a game between Alice and Bob. They al-
ternate moves starting with Alice’s move. A move of Alice con-
sists in producing a subset of . A move of Bob consists in
marking some sets previously produced by Alice (the number of
marked sets can be 0). Bob wins if after every one of his moves
every that is covered by at least of Alice’s sets
belongs to a marked set. The length of a play is decided by Alice.
She may stop the game after any of Bob’s moves. However, the
total number of her moves (and hence Bob’s moves) must be
less than . (It is easy to see that without loss of generality we
may assume that Alice makes exactly moves.) Bob can
easily win if he marks every set produced by Alice. However,
we want to minimize the total number of marked sets.

Claim 4: Bob has a winning strategy that marks at most
sets.

Proof: We present an explicit strategy for Bob, which con-
sists in in executing at every move the
following algorithm for the sequence which has
been produced by Alice until then.

• Step 1. Let be the largest power of 2 dividing . Consider
the last sets in the sequence and call
them .

• Step 2. Let be the set of ’s that occur in at least of
the sets . Let be a set such that is
maximal. Mark (if there is more than one then choose
the one with least) and remove all elements of
from . Call the resulting set . Let be a set such
that is maximal (if there is more than one then
choose the one with least). After removing all elements of

from we obtain a set . Repeat the argument
until we obtain .
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First, for the above we have . This is
proved as follows. We have

since every is counted at least times in the sum in
the LHS. Thus, there is a set in the list such that
the cardinality of its intersection with is at least times
the RHS. By the choice of it is such a set and we have

.
The set has lost at least a th fraction of its ele-

ments, that is, . Since , obvi-
ously every element of (still) occurs in at least of the
sets . Thus we can repeat the argument and mark a
set with . After removing all ele-
ments of from we obtain a set that is at most a

th fraction of , that is, .
Recall that we repeat the procedure times where is

the number of repetitions until . It follows that
, since

Second, for every fixed there are at most
different ’s divisible by and

the number of marked sets we need to use for
this satisfies . For all

together we use a total number of marked sets
of at most

In this way, after every move of Bob, every
occurring in of Alice’s sets belongs to a marked set of Bob.

This can be seen as follows. Assume to the contrary, that there is
an that occurs in of Alice’s sets following move of Bob,
and belongs to no set marked by Bob in step or earlier. Let

with be the binary expansion
of . By Bob’s strategy, the element occurs less than
times in the first segment of sets of Alice, less than
times in the next segment of of Alice’s sets, and so on. Thus
its total number of occurrences among the first sets of Alice is
strictly less than .

Let us finish the proof of the Lemma 6. Given the list of ,
recursively enumerate the sets in of Kolmogorov complexity
less than , say with , and consider
this list as a particular sequence of moves by Alice. Use Bob’s
strategy of Claim 4 against Alice’s sequence as above. Note
that recursive enumeration of the sets in of Kolmogorov com-
plexity less than means that eventually all such sets will be
produced, although we do not know when the last one is pro-
duced. This only means that the time between moves is un-
known, but the alternating moves between Alice and Bob are de-
terministic and sequential. According to Claim 4, Bob’s strategy
marks at most sets. These marked sets cover every

string occurring at least in of the sets . We
do not know when the last set appears in this list, but Bob’s
winning strategy of Claim 4 ensures that immediately after re-
cursively enumerating in the list every string that
occurs in sets in the initial segment is covered
by a marked set. The Kolmogorov complexity of every
marked set in the list is upper bounded by
the logarithm of the number of marked sets, that is

, plus the description of , and in-
cluding separators in bits.

We continue the proof of the theorem. Let the distortion
family satisfy properties 2 and 3. Consider the subfamily
of consisting of all sets with . Let

be the family and the number of
sets in of Kolmogorov complexity at most .

Given and we can generate all
of Kolmogorov complexity at most . Then we can

describe by its index among the generated sets. This shows
that the description length (ignoring an ad-
ditive term of order which suffices since

and are both ).
Since by property 3, while

every set satisfies , we have
. Let and ,

and ignore additive terms of order .
Applying Lemma 6 shows that there is a set with

and therefore
proves Theorem 2.

Remark 8: Previously an analog of Lemma 6 was known
in the case when is the class of all subsets of fixed
cardinality . For this is in [9, Exercise 4.3.8 (second
edition) and 4.3.9 (third edition)]: If a string has at least
descriptions of length at most ( is called a description of
if where is the reference Turing machine), then

. Reference [22] general-
izes this to all : If a string belongs to at least sets of
cardinality and Kolmogorov complexity , then
belongs to a set of cardinality and Kolmogorov complexity

.

Remark 9: Probabilistic proof of Claim 4. Consider a new
game that has the same rules and one additional rule: Bob looses
if he marks more than sets. We will prove
that in this game Bob has a winning strategy.

Assume the contrary: Bob has no winning strategy. Since the
number of moves in the game is finite (less than ), this implies
that Alice has a winning strategy.

Fix a winning strategy of Alice. To obtain a contradiction
we design a randomized strategy for Bob that beats Alice’s
strategy with positive probability. Bob’s strategy is very
simple: mark every set produced by Alice with probability

.

Claim 5: (i) With probability more than , following every
move of Bob every element occurring in at least of Alice’s
sets is covered by a marked set of Bob.

(ii) With probability more than , Bob marks at most
sets.
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Proof: (i) Fix and estimate the probability that there is
move of Bob following which belongs to of Alice’s sets
but belongs to no marked set of Bob.

Let be the event “following a move of Bob, string occurs
at least in sets of Alice but none of them is marked.” Let us
prove by induction that

For the statement is trivial. To prove the induction step
we need to show that .

Let be a sequence of decisions by Bob:
if Bob marks the th set produced by Alice and

otherwise. Call bad if following Bob’s th move it happens for
the first time that belongs to sets produced by Alice by move

but none of them is marked. Then is the disjoint union of
the events “Bob has made the decisions ” (denoted by ) over
all bad . Thus it is enough to prove that

Given that Bob has made the decisions , the event means
that after those decisions the strategy will at some time in the
future produce the st set with member but Bob will not
mark it. Bob’s decision not to mark that set does not depend on
any previous decision and is made with probability . Hence

The induction step is proved. Therefore,
, where the last equality

follows by choice of .
(ii) The expected number of marked sets is . Thus the

probability that it exceeds is less than .
It follows from Claim 5 that there exists a strategy by Bob that

marks at most sets out of Alice’s produced
sets, and following every move of Bob every element occur-

ring in at least of Alice’s sets is covered by a marked set of
Bob. Note that we have proved that this strategy of Bob exists
but we have not constructed it. Given and , the number
of games is finite, and a winning strategy for Bob can be found
by brute force search.

Proof: of Theorem 3. Let be a set containing
string . Define the sufficiency deficiency of in by

This is the number of extra bits incurred by the two-part code
for using compared to the most optimal one-part code of

using bits. We relate this quantity with the randomness
deficiency of in the set . The
randomness deficiency is always less than the sufficiency defi-
ciency, and the difference between them is equal to :

(17)

where the equality follows from the symmetry of information
(10), ignoring here and later in the proof additive terms of order

.
By Theorem 2, which assumes that properties 2 and 3 hold

for the distortion family , there is with
and . Since is a set

of minimal Kolmogorov complexity among such we have
. Therefore

where the last equality is true by (17).
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